Drugs + Your BODY: It Isn’t Pretty

Altering drugs interferes with the body’s normal functioning. The alteration can be physical or psychological. Inappropriate drug use can be deadly.

Effects of Drug Abuse:

1. Drugs can affect the nervous system (CNS) made up of the central nervous system (CNS) and the peripheral nervous system (PNS). See diagram to the right.

 The PNS is divided into two parts: 1) a voluntary nervous system (VNS), part of the CNS that controls voluntary actions, and 2) the involuntary nervous system (INS), part of the CNS that controls involuntary actions.

2. Drugs can change the brain’s wiring and function, with long-term effects on memory, learning, and emotional stability. Over time, drug abuse can change the brain’s wiring and function, with long-term effects on memory, learning, and emotional stability.

 Drugs directly affect many parts of the brain, including those that control movement, breathing, and behavior. Over time, drug abuse can change the brain’s wiring and function, with long-term effects on memory, learning, and emotional stability.

 The information below explains what drugs can do to the body and brain—and the effects.

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>Effect(s)</th>
<th>Reason(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEART</td>
<td>Increased heart rate and blood pressure</td>
<td>Drugs can affect the involuntary nervous system (INS) that controls heart rate and blood pressure.</td>
</tr>
<tr>
<td>LUNGS</td>
<td>Decreased lung function, including difficulty breathing</td>
<td>Drugs can affect the involuntary nervous system (INS) that controls breathing.</td>
</tr>
<tr>
<td>SKIN</td>
<td>Changes in skin color and texture</td>
<td>Drugs can affect the involuntary nervous system (INS) that controls sweat production and blood flow.</td>
</tr>
<tr>
<td>BONES</td>
<td>Reduced bone density, increasing the risk of fractures</td>
<td>Drugs can affect the involuntary nervous system (INS) that controls calcium metabolism.</td>
</tr>
</tbody>
</table>

 ACTIVITY 1: The Brain–Body Connection

 The brain is connected to the body by nerves and other structures that carry information from the brain to the body and from the body to the brain. This connection allows the brain to control and receive information from the body. The brain is connected to the body by nerves and other structures that carry information from the brain to the body and from the body to the brain.

 The brain is connected to the body by nerves and other structures that carry information from the brain to the body and from the body to the brain. The brain is connected to the body by nerves and other structures that carry information from the brain to the body and from the body to the brain.

 Think It Through: (separate paper) Answer the question below. In the context of where the diagram has been completed. On separate paper, answer the A, B, and C questions in the context of the worksheet.

 Where the diagram has been completed.

 A. What is a possible negative outcome from this decision?
 B. What could happen to the girls and their families or even a total stranger if your outcome is true?
 C. What could be one outcome if it happened?

 ACTIVITY 2: Drugs + Your LIFE: It Isn’t Pretty

 In addition to the health risks to the body, and altering drugs can alter people’s perceptions and emotions. The image above shows a person in a car with a drug in their system.

 Think It Through: (separate paper) Answer the question below. Where the diagram has been completed. On separate paper, answer the A, B, and C questions in the context of the worksheet.

 Where the diagram has been completed.

 A. What is a possible negative outcome from this decision?
 B. What could happen to the girls and their families or even a total stranger if your outcome is true?
 C. What could be one outcome if it happened?
not just your thinking, feeling, learning, and movements, but virtually everything your body does.

ACTIVITY 1

Use complete sentences.

1. Sluggish—causing a person's breathing to slow down. Taking large quantities or using them inappropriately (e.g., alcohol, drugs of abuse) can affect your involuntary system, causing your body to respond to a situation that doesn't really exist. For example, cocaine affects a part of the brain that tells your involuntary system to increase your heart rate in preparation for fighting or fleeing. When you are watching a movie with a scary scene, your heart rate may increase. This is a normal involuntary response.

2. Drugs can also affect your involuntary system, causing your body to respond to a situation that doesn't really exist. For example, heroin affects a part of the brain that tells your involuntary system to slow down your heart rate. When you are watching a movie with a scary scene, your heart rate may decrease. This is a normal involuntary response.

ACTIVITY 2

Drugs + Your BODY:

It Isn’t Pretty

Altering drugs interfere with the body's normal functioning. This alteration can be momentary, or drugs can alter human body and mind. Use the information to answer the questions in this activity.

How It Works:

Drugs change your brain and body, and they can affect many parts of the brain, including those that allow you to control your voluntary and involuntary responses.

What are some actions that include both voluntary and involuntary responses?

- Chewing tobacco
- Cancer
- The hormones in steroids stimulate oil glands
- Stunts growth
- Anabolic steroids
- The back, face, and shoulders
-终端 hair in girls
- Breast growth in boys and deep voices
- Masculinization
- Feminization
- Alcoholic liver disease
- Abscess
- Lung infections
- Stun the growth on the bones to stop growing
- Heart attack
- Lung inflammation, phlegm buildup
- Smoking
- Marijuana
- Alcohol
- Fatty liver
- Alcohol damage the liver
- How does alcohol damage the liver? How is this similar to the damage caused by the other drugs?

ACTIVITY 3

Think It Through:

A causal diagram is a tool to help chart possible outcomes that can result from a series of actions or decisions. Such diagrams are used in many areas, from economics to medicine, to predict the possible results of actions and decisions. A causal diagram is a tool to help chart possible outcomes that can result from a series of actions or decisions. Such diagrams are used in many areas, from economics to medicine, to predict the possible results of actions and decisions.